

Plugwise	unleashed
A document explaining the protocol used by Plugwise products

Author: Maarten Damen (www.maartendamen.com)

Disclaimer:

This document was not written by Plugwise B.V. nor are there any connections between the author
and Plugwise B.V. Actually Plugwise B.V. refuses any cooperation on open source products! The
information in this document was collected for educational purposes, and to embrace open source
support for Plugwise products. The information was collected use merely legal reverse engineering
tools (serial port sniffers, debuggers etc.)

Version Author Comments
0.1 Maarten Damen Initial version, open to

feedback.

Document index
Introduction..4

Plugwise hardware ...5

Serial interface ..5

Communication protocol ..5

Stick initialization ..6

Calibration request ...7

Power information request (current) ..8

Device information request .. 10

Power buffer information ... 12

4

Introduction

This document describes the protocol used in Plugwise products. The document is still not perfect
(there are a few open ends) so any feedback is welcome. There was no cooperation from Plugwise in
making this document, instead they refuse any cooperation on open source support.
So don’t bother Plugwise about this document please. The creation of this document took me a lot of
time, so I would appreciate at least a reference to me/this document when you use it in your project.
A donation is off course also very welcome.

Enjoy the document!

5

Plugwise hardware

The MC (Main Controller) also known as “Stick” utilizes an Ember EM250 chipset (Zigbee PRO), more
info can be found here:

http://www.ember.com/products_zigbee_chips_e250.html

The MC communicates directly with the NC (Network Controller), also known as Circle+. The NC
communicates with other nodes (Circles) in the mesh network topology. As I never opened a Circle I
don’t know what hardware it utilizes.

Plugwise communication takes place in the following way:

1) A request is sent to the MC from the PC.
2) The MC sends the request to the NC.
3) The NC may forward the request to other circles.

My though is that the Circle/Circle+ uses the same hardware, I haven’t wrecked/opened one myself
though.

Serial interface

Although the Plugwise stick looks like a USB interface, it actually utilizes a serial protocol. A virtual
serial port is provided by an onboard FTDI chip.

Communication protocol

The Plugwise communication protocol uses the same sequence for all commands handled by the MC.
It can be divided in a few steps (an example follows later):

1) The PC sends a request to the MC.
2) The MC responds to this request with an response code, including a sequence number.
3) The MC responds again with the result of the request.

How does this look? To illustrate this we will use the example command for stick initialization.

1) The stick initialization command is “000A” with no parameters. A CRC checksum is added to
each command, this is a 16bit CRC checksum. For more information about this refer to the
CRC topic in this guide. After adding the CRC checksum the command looks like this:
“000AB43C”. Please note that the initialization command is always has the same checksum
as the checksum is generated over the same command without parameters all the time.

2) After the command has been received by the MC, the MC sends an acknowledge to the PC.
The acknowledge response looks like this: “00000F5F00C1E2FA”

Data Datatype Explanation
0000 Integer This command indicates the

6

acknowledge command sent
by the MC.

0F5F Integer This is the sequence number,
each command gets its own
sequence number of which
you should keep track of in
your software. In this case
the sequence number is
“3935”

00C1 Integer This is the acknowledge code.
00C1 means the command
was successful.

E2FA Integer This is the 16bit CRC
checksum value.

3) After the acknowledgement has been sent to the PC, the result of the command will be sent
over the serial port. In the case of the initialization command it’s response is:
“00110F5F000D6F00002364120101840D6F00002366BBC684FF485C”

0011 is the command response code, followed by the payload and the command response is
finalized by the CRC16 checksum (485C)

Here’s an example from a serial port sniffer:

Please note that the acknowledge response is ignored for the rest of this document, as it is the same
for each and every response.

Stick initialization

The stick needs to be initialized once a connection has been made. The initialization is as follows:

Send -> 000AB43C
Command response -> 00110F5F000D6F00002364120101840D6F00002366BBC684FF485C

The send request consist of the request code 000A and a CRC checksum value: B43C. The response is
described in the table:

Data Datatype Explanation
0011 Integer This is the command response

code.
0F5F Integer This is the sequence number

associated with the request.

7

000D6F0000236412 Unsigned 64bit integer This is the mac address of the
MC.

01 Boolean ??
01 Boolean Indicates whether or not the

network is online. (Association
with Circle+)

840D6F00002366BB Unsigned 64bit integer This is the unique network
code, not sure how it’s
generated. (Zigbee PRO?)

C684 Integer Shorter notation of the
network unique ID. This only
changes when completely
resetting stick+Circle+.

FF ?? Unused, never changes.
485C Integer CRC16 checksum.

Here’s an example from a serial port sniffer:

Calibration request

Send -> 0026000D6F00002366BB7071
Command response -> 00272CBC000D6F00002366BB3F78BD69B6FF08763CA99962000000000B70

The send request consist of the request code 0026 and a CRC checksum value: 7071. The response is
described in the table:

Data Datatype Explanation
0027 Integer This is the command response

code.
2CBC Integer This is the sequence number

associated with the
request/response.

000D6F00002366BB Unsigned 64bit integer This is the MAC address of the
Circle.

3F78BD69 Float This is the gaina calibration
parameter (see
PlugwiseData.MDB)

B6FF0876 Float This is the gainb calibration
parameter (see
PlugwiseData.MDB)

3CA99962 Float This is the offtot calibration
parameter (see
PlugwiseData.MDB)

8

00000000 Float This is the offruis calibration
parameter (see
PlugwiseData.MDB)

0B70 Integer CRC16 checksum.

All hexadecimal values need to be converted to floats, this will give you the same results as in the
Plugwise database file.

Here’s an example from a serial port sniffer:

Power information request (current)

This request allows you to get a current (actual) power reading from a specific Circle.
Using a special formula the result translates to a current watt usage.

Send -> 0012000D6F00002366BB338B
Receive -> 001324BD000D6F00002366BB00020013000000AD00000000000A7FCA

The send request consists of the request code ‘0012’, the MAC address of the Circle
‘000D6F00002366BB’ and the CRC checksum value ‘338B’, the response is described in the table:

Data Datatype Explanation
0013 Integer This is the response code for

the power information request.
24BD Integer This is the sequence number

associated with the
request/response.

000D6F00002366BB Unsigned 64bit integer This is the MAC address of the
Circle.

0002 16bit integer This is the number of pulses
based on consumption at a 1
second interval.

0013 16bit integer This is the number of pulses
based on consumption at a 8
second interval.

000000AD 32bit integer This are the total number of
pulses.

0000 Unsigned 16bit integer ?? I suspect this is related to

9

production of energy.
0000 Unsigned 16bit integer ?? I suspect this is related to

production of energy.
000A Unsigned 16bit integer ?? I suspect this is related to

production of energy.
7FCA Integer CRC16 Checksum.

To calculate the amount of watt used, the pulses first need to be corrected based upon the
calibration. Here’s a python routine I use to do the correction:

 def pulsecorrection(self, pulses, timespansource, timespantarget,
gain_a, \
 gain_b, offtot, offnoise):
 """
 Corrects pulses based on calibration information, and time elapsed.
 """
 if pulses == 0.0:
 return 0.0

 corrected = 0.0
 value = pulses / timespansource
 out = timespantarget * (((pow(value + offnoise, 2.0) * gain_b)\
 + ((value + offnoise) * gain_a)) + \
 offtot)
 return out

After the pulses have been corrected you can convert the correct pulses to watt using the following
helper functions (python again):

 def pulsetowatt(self, pulses):
 """
 Converts pulses to the watt unit.
 """
 return(self.pulsetokwh(pulses) * 1000)

 def pulsetokwh(self, pulses):
 """
 Converts pulses to the kWh unit.
 """
 return (pulses / 3600.0) / 468.9385193;

Here’s an example power request from a serial port sniffer:

10

Device information request

The device information request can be used to get general information about the Plugwise device.
This includes one very important piece of information which is used to obtain power buffer
information.

Send -> 0023000D6F00002366BB231B
Receive -> 00240170000D6F00002366BB0A082BBC0005205001850000047300074AA66380012A6E

The send request consists of the request code ‘0023, the MAC address of the Circle
‘000D6F00002366BB’ and the CRC checksum value ‘231B, the response is described in the table:

Data Datatype Explanation
0024 Integer This is the response code for

the device information request.
0170 Integer This is the sequence number

associated with the
request/response.

000D6F00002366BB Unsigned 64bit integer This is the MAC address of the
Circle.

0A Byte This is the year of the Circle
internal clock, in hexadecimal
format (it’s Y2000 based) To
get the current date you need
to add 2000.

08 Byte This is the month of the Circle
internal clock, in hexadecimal
format.

2BBC Unsigned 16bit integer These are the amount minutes
of the Circle internal clock, in
hexadecimal format.

00052050 32bit integer This is the current log address,
this one is important to get
power buffer information.
Convert this hexadecimal value
to integer and use the following
math, to get the log address in
the same format like in the
Plugwise MDB file: (logaddress
- 278528) / 32

01 Boolean This value indicates the power
state of the Circle (on or off)

85 Byte This indicates the amount of
herz the module operates on
(85 hexadecimal appears to be
50hz, this value never changes)

000004730007 String This string represents the
hardware version of the Circle.
In my case: 0000-0473-0007
(cross checked with MDB)

11

4AA66380 32bit integer This value represents the
firmware version of the Circle.
The value is a timestamp (Unix
Epoch)

01 Byte ??

The following functions can be helpful:

 def logaddresstoint(self, logaddress):
 """
 Converts plugwise log address to integer.
 """
 return (logaddress - 278528) / 32

 def deviceinforesponse(self, response):
 """
 Handles plugwise general device information response.
 """
 if len(response) != 70 or response.startswith(self.DEVINFORESPONSE)
== False:
 print "invalid device information response"
 else:
 #print response
 macaddress = response[8:24]
 year = self.hextoint(response[24:26]) + 0x7d0
 month = self.hextoint(response[26:28])
 minutes = self.hextoint(response[28:32])

 logaddress =
self.logaddresstoint(self.hextoint(response[32:40]))
 powerstate = self.hextoint(response[40:42])
 #herz = self.determinehz(response[42:44])
 hwversion = "%s-%s-%s" % (response[44:48], response[48:52],\
 response[52:56])

 firmware =
datetime.datetime.utcfromtimestamp(self.hextoint(response[56:64]))

 for device in self.devices:
 if device.address == macaddress:
 device = device

 status = False
 if powerstate == 1:
 status = True
 elif powerstate == 0:
 status = False

 args = [device.id, status]
 self.router.sendcommand("update_status", args, "database")

 print logaddress

device =
PlugwiseDevices.selectBy(address=macaddress).limit(1)[0]

 # update buffer information
 if (device.lastlogaddress < logaddress):

12

 if device.lastlogaddress == None:
 lastlogaddress = 0
 else:
 lastlogaddress = device.lastlogaddress

 for i in range(lastlogaddress+1, logaddress+1):
 self.get_powerbuffer(str(device.address), i)

 self.waitreply = False

Here’s an example device information request from a serial port sniffer:

Power buffer information

The Plugwise Circle holds an internal buffer with information about power usage in the past. Of
course we can read this historic power information.

Send -> 0048000D6F00002366BB00044020167E
Receive ->
0049016C000D6F00002366BB0000338C0000001D0000338D0000001D0000338E000000220000338F
0000001A00044020B020

The send request consists of the request code ‘0048, the MAC address of the Circle
‘000D6F00002366BB’, the log address.. and the CRC checksum value ‘167E.

The log address can be calculated using the same formula as described in the last request (Device
information) but then reversed..

Logaddress = (logaddress + 278528) * 32

Each response contains four hours of information (4 buffers), the response is described in the table:

Data Datatype Explanation
0049 Integer This is the response code for

the power buffer information
request.

016C Integer This is the sequence number
associated with the
request/response.

000D6F00002366BB Unsigned 64bit integer This is the MAC address of the
Circle.

13

0000338C 32bit integer This is the first logdate. See the
helpful functions how to
convert this logdate to a
feasible value.

0000001D 32bit integer This is the pulses information
for the associated hour, use the
methods previously described
to convert this to a feasible
value (in kWh)

0000338D 32bit integer This is the second logdate. See
the helpful functions how to
convert this logdate to a
feasible value.

0000001D 32bit integer This is the pulses information
for the associated hour, use the
methods previously described
to convert this to a feasible
value (in kWh)

0000338E 32bit integer This is the third logdate. See
the helpful functions how to
convert this logdate to a
feasible value.

00000022 32bit integer This is the pulses information
for the associated hour, use the
methods previously described
to convert this to a feasible
value (in kWh)

0000338F 32bit integer This is the fourth logdate. See
the helpful functions how to
convert this logdate to a
feasible value.

0000001A 32bit integer This is the pulses information
for the associated hour, use the
methods previously described
to convert this to a feasible
value (in kWh)

00044020 32bit integer This is the log address
associated with the buffer
information.

B020 Integer CRC16 Checksum.

The following functions can be helpful:

 def clockinfotodatetime(self, year, month, minutes):
 """
 Converts plugwise device date and time information to pythonic
datetime.
 """
 time = datetime.datetime(2000, 1, 1, 0, 0, 0, tzinfo=tzutc())

 if year > 2000:
 year = year - 2000

14

 time += relativedelta(months=+month-1, years=+year,
minutes=+minutes, hours=-1)
 return time

Here’s an example power buffer information request from a serial port sniffer:

